Low-frequency oscillations in the cerebellar cortex of the tottering mouse.

نویسندگان

  • Gang Chen
  • Laurentiu S Popa
  • Xinming Wang
  • Wangcai Gao
  • Justin Barnes
  • Claudia M Hendrix
  • Ellen J Hess
  • Timothy J Ebner
چکیده

The tottering mouse is an autosomal recessive disorder involving a missense mutation in the gene encoding P/Q-type voltage-gated Ca2+ channels. The tottering mouse has a characteristic phenotype consisting of transient attacks of dystonia triggered by stress, caffeine, or ethanol. The neural events underlying these episodes of dystonia are unknown. Flavoprotein autofluorescence optical imaging revealed transient, low-frequency oscillations in the cerebellar cortex of anesthetized and awake tottering mice but not in wild-type mice. Analysis of the frequencies, spatial extent, and power were used to characterize the oscillations. In anesthetized mice, the dominant frequencies of the oscillations are between 0.039 and 0.078 Hz. The spontaneous oscillations in the tottering mouse organize into high power domains that propagate to neighboring cerebellar cortical regions. In the tottering mouse, the spontaneous firing of 83% (73/88) of cerebellar cortical neurons exhibit oscillations at the same low frequencies. The oscillations are reduced by removing extracellular Ca2+ and blocking L-type Ca2+ channels. The oscillations are likely generated intrinsically in the cerebellar cortex because they are not affected by blocking AMPA receptors or by electrical stimulation of the parallel fiber-Purkinje cell circuit. Furthermore, local application of an L-type Ca2+ agonist in the tottering mouse generates oscillations with similar properties. The beam-like response evoked by parallel fiber stimulation is reduced in the tottering mouse. In the awake tottering mouse, transcranial flavoprotein imaging revealed low-frequency oscillations that are accentuated during caffeine-induced attacks of dystonia. During dystonia, oscillations are also present in the face and hindlimb electromyographic (EMG) activity that become significantly coherent with the oscillations in the cerebellar cortex. These low-frequency oscillations and associated cerebellar cortical dysfunction demonstrate a novel abnormality in the tottering mouse. These oscillations are hypothesized to be involved in the episodic movement disorder in this mouse model of episodic ataxia type 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse.

The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-fr...

متن کامل

Timing in the cerebellum: oscillations and resonance in the granular layer.

The brain generates many rhythmic activities, and the olivo-cerebellar system is not an exception. In recent years, the cerebellum has revealed activities ranging from low frequency to very high-frequency oscillations. These rhythms depend on the brain functional state and are typical of certain circuit sections or specific neurons. Interestingly, the granular layer, which gates sensorimotor an...

متن کامل

Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering.

Humans with the disorder episodic ataxia type 2 (EA2) and the tottering mouse mutant exhibit episodic attacks induced by emotional and chemical stress. Both the human and mouse disorders result from mutations in CACNA1A, the gene encoding the alpha(1)2.1 subunit of Ca(v)2.1 voltage-gated calcium channels. These mutations predict reduced calcium currents, particularly in cerebellar Purkinje cell...

متن کامل

Electrical Coupling Mediates Tunable Low-Frequency Oscillations and Resonance in the Cerebellar Golgi Cell Network

Tonic motor control involves oscillatory synchronization of activity at low frequency (5-30 Hz) throughout the sensorimotor system, including cerebellar areas. We investigated the mechanisms underpinning cerebellar oscillations. We found that Golgi interneurons, which gate information transfer in the cerebellar cortex input layer, are extensively coupled through electrical synapses. When depola...

متن کامل

Low Frequency Oscillations Suppression via CPSO based Damping Controller

In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 1  شماره 

صفحات  -

تاریخ انتشار 2009